©2024 Chris Nielsen – www.nielsenedu.com

Converting From Denary to Binary

The textbook (pages 112-114) has a pretty good explanation of one simple method of converting from denary to binary. Here is the calculation done in a single table converting the denary value 201 to binary.

3			O		U	5		5	
bit position	8	7	6	5	4	3	2	1	0
exponential	28	27	2 ⁶	2 ⁵	24	23	2 ²	2 ¹	20
bit value (denary)	256	128	64	32	16	8	4	2	1
difference	×	201 -128 73	73 -64 9	×	×	$\begin{array}{c} 9 \\ -8 \\ \hline 1 \end{array}$	×	×	$\begin{array}{c} 1 \\ -1 \\ \hline 0 \end{array}$
binary digits (bits)		1	1	0	0	1	0	0	1

The following is a more concise and compact version of the calculations in the table above.

denary		201	73			9			1
bit value	256	128	64	32	16	8	4	2	1
difference		73	9			1			0
binary digits (bits)		1	1	0	0	1	0	0	1

1. Given the denary number 182, complete the table.

a)	denary		182		54	22		6	2	
	bit value	256	128	64	32	16	8	4	2	1
	difference		54		22	6		2	0	
	binary digits (bits)		1	0	1	1	0	1	1	0

b) Write the final 8-bit binary value here:

1011_0110

2. Given the denary number 125, complete the table.

a)	denary			125	61	29	13	5		1
	bit value	256	128	64	32	16	8	4	2	1
	difference			61	29	13	5	1		0
	binary digits (bits)		0	1	1	1	1	1	0	1

b) Write the final 8-bit binary value here:

0111_1101

Worksheet: Denary to Binary

©2024 Chris Nielsen - www.nielsenedu.com

3. For Pearson, you will only be asked to convert numbers that result in a maximum of 8 bits; however it is not any more difficult to convert larger numbers. Given the denary number 801, complete the table.

	J			U			J		,	1		
a)	denary		801	289			33					1
	bit value	1024	512	256	128	64	32	16	8	4	2	1
	difference		289	33			1					0
	binary digits (bits)	0	1	1	0	0	1	0	0	0	0	1

b) Write the final 10-bit binary value here:

11_0010_0001

4. Back to numbers less than 8 bits. Given the denary number 255, complete the table.

a)	denary		255	127	63	31	15	7	3	1
	bit value	256	128	64	32	16	8	4	2	1
	difference		127	63	31	15	7	3	1	0
	binary digits (bits)		1	1	1	1	1	1	1	1

b) Write the final 8-bit binary value here:

1111_1111

5. Back to numbers less than 8 bits. Given the denary number 127, complete the table.

a)	denary			127	63	31	15	7	3	1
	bit value	256	128	64	32	16	8	4	2	1
	difference			63	31	15	7	3	1	0
	binary digits (bits)		0	1	1	1	1	1	1	1

b) Write the final 8-bit binary value here:

0111_1111

Notice the answers to question 4 and question 5. The value 2^8 is 256, and when we convert one fewer than this number, 255, the result is all 1's for the remaining 8 bits, so 1111_1111 . The same happens with $2^7 = 128$, so 127 is 0111_1111 . This is a good thing to remember to allow you to quickly convert certain numbers.

We will also study another algorithm for converting from denary to binary when we study bit shifting.